Canu Quick Start
- (老版的canu)
Canu specializes in(专门从事) assembling PacBio or Oxford Nanopre sequences. Canu will correct the reads, then trim suspicious regions(修剪可疑区域) (such as remaining SMRTbell adapter), then assemble the corrected and cleaned reads into unitigs(非重复序列区).(canu是专门用来组装三代reads的,三步走:校正、修剪、组装。)
Brief Introduction简单介绍
Canu has been designed to auto-detect your resources(硬件资源) and scale itself to fit. Two parameters let you restrict the resources used(限制资源的使用).
maxMemory=XXmaxThreads=XX
Memory is specified in gigabytes(千兆G). On a single machine, it will restrict Canu to at most this limit, on the grid(集群), no single job will try to use more than the specified resources.
The input sequences can be FASTA or FASTQ(有质量信息的二代reads) format, uncompressed, or compressed with gz, bz2 or xz(使用格式).
Running on the grid
Canu is designed to run on grid environments(集群环境) (LSF/PBS/Torque/Slrum/SGE are supported). Currently, Canu will submit itself to the default queue with default time options(所以在运行canu时,如果没有手工设置,就必须要指定grid为false,否则无法提交到集群运行). You can overwrite this behavior by providing any specific parameters you want to be used for submission as an option. Users should also specify a job name to use on the grid:
gridOptionsJobName=myassembly"gridOptions=--partition quick --time 2:00"
Assembling PacBio data 组装
Pacific Biosciences released P6-C4 chemistry reads. You can download them (7 GB) or from the . You must have the Pac Bio SMRTpipe software installed to extract the reads as FASTQ(安装原厂软件将原始数据提出成FASTQ).
We made a 25X subset FASTQ available (测试数据)
or use the following curl command:
curl -L -o p6.25x.fastq http://gembox.cbcb.umd.edu/mhap/raw/ecoli_p6_25x.filtered.fastq
Correct, Trim and Assemble(校正、修建、组装)
By default, canu will correct the reads, then trim the reads, then assemble the reads to unitigs(非重复序列区).
默认是一条龙,全部自动做完。
canu \ -p ecoli -d ecoli-auto \ genomeSize=4.8m \ -pacbio-raw p6.25x.fastq
#PBS -N R498_CANU#PBS -j oe#PBS -l nodes=1:ppn=4#PBS -l mem=30gb#PBS -q lowcd $PBS_O_WORKDIRdateexport LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/public/software/gcc-4.9.2/lib64/public/software/canu-master/Linux-amd64/bin/canu \ -p ecoli -d ecoli-auto \ genomeSize=4.8m \ -pacbio-raw ecoli_p6_25x.filtered.fastq
This will use the prefix(前缀) ‘ecoli’ to name files, compute the correction task(校正任务) in directory ‘ecoli-auto/correction’, the trimming task(修剪任务) in directory ‘ecoli-auto/trimming’, and the unitig construction(contig构建) stage in ‘ecoli-auto’ itself. Output files are described in the next section.
Find the Output
The canu progress chatter records statistics(会记录一些统计量) such as an input read histogram(输入read的直方图), corrected read histogram(校正后的read直方图), and overlap types(overlap类型). Outputs from the assembly tasks are in:
- ecoli*/ecoli.correctedReads.fasta.gz (校正后的reads,可以直接less查看)
The fasta output is split into three types:
- 1.ecoli*/asm.contigs.fasta (最终的contig文件,里面有些标签头)
-
Everything which could be assembled and is part of the primary assembly, including both unique and repetitive elements. Each contig has several flags included on the fasta def line:
>tig######## len=
reads= covStat= gappedBases= class= suggestRepeat= suggestCircular= >tig00000000 len=110432 reads=231 covStat=181.52 gappedBases=no class=contig suggestRepeat=no suggestCircular=noTGAAAACACCAGTCGGTGGCAGACAAGGCGTCGGTCGGTGGAAGTGTAGACGCCCAACAACGGCAGCATAATAGGTCAGCCGTGCAGGCGGAGACACCAG
下面是对上面标签的细致化解释: len - Length of the sequence, in bp. reads
- Number of reads used to form the contig. (组装这条contig用了多少个reads) covStat (log(不同的contig/two-copy)???)
- The log of the ratio of the contig being unique(唯一的) versus being two-copy(), based on the read arrival rate(). Positive values indicate more likely to be unique, while negative values indicate more likely to be repetitive. See in . gappedBases
- If yes, the sequence includes all gaps in the multialignment. class
- Type of sequence. Unassembled sequences are primarily low-coverage sequences spanned by a single read. suggestRepeat
- If yes, sequence was detected as a repeat based on graph topology or read overlaps to other sequences. suggestCircular
- If yes, sequence is likely circular. Not implemented.
Correct, Trim and Assemble, Manually 手动运行
Sometimes, however, it makes sense to do the three top-level tasks by hand. This would allow trying multiple unitig construction parameters on the same set of corrected and trimmed reads.
First, correct the raw reads:
canu -correct \ -p ecoli -d ecoli \ genomeSize=4.8m \ -pacbio-raw p6.25x.fastq
Then, trim the output of the correction:
canu -trim \ -p ecoli -d ecoli \ genomeSize=4.8m \ -pacbio-corrected ecoli/correction/ecoli.correctedReads.fasta.gz
And finally, assemble the output of trimming, twice(为啥要两次?):
canu -assemble \ -p ecoli -d ecoli-erate-0.013 \ genomeSize=4.8m \ errorRate=0.013 \ -pacbio-corrected ecoli/trimming/ecoli.trimmedReads.fasta.gzcanu -assemble \ -p ecoli -d ecoli-erate-0.025 \ genomeSize=4.8m \ errorRate=0.025 \ -pacbio-corrected ecoli/trimming/ecoli.trimmedReads.fasta.gz
The directory layout for correction and trimming is exactly the same as when we ran all tasks in the same command. Each unitig construction task needs its own private work space, and in there the ‘correction’ and ‘trimming’ directories are empty. The error rate always specifies the error in the corrected reads which is typically <1% for PacBio data and <2% for Nanopore data (<1% on newest chemistries).
Assembling Oxford Nanopore data
A set of E. coli runs were released by the Loman lab. You can download one or any of them from the .(下载测试数据)
or use the following curl command:
curl -L -o oxford.fasta http://nanopore.s3.climb.ac.uk/MAP006-PCR-1_2D_pass.fasta
Canu assembles any of the four available datasets into a single contig but we picked one dataset to use in this tutorial. Then, assemble the data as before:
canu \ -p ecoli -d ecoli-oxford \ genomeSize=4.8m \ -nanopore-raw oxford.fasta
The assembled identity is >99% before polishing.
Assembling With Multiple Technologies/Files多类型数据组装
Canu takes an arbitrary number of input files/formats. We made a mixed dataset of about 10X of a PacBio P6 and 10X of an Oxford Nanopore run available (测试数据)
or use the following curl command:
curl -L -o mix.tar.gz http://gembox.cbcb.umd.edu/mhap/raw/ecoliP6Oxford.tar.gztar xvzf mix.tar.gz
Now you can assemble all the data:
canu \ -p ecoli -d ecoli-mix \ genomeSize=4.8m \ -pacbio-raw pacbio*fastq.gz \ -nanopore-raw oxford.fasta.gz
Assembling Low Coverage Datasets组装低覆盖度的数据
When you have 30X or less coverage, it helps to adjust the Canu assembly parameters. Typically, assembly 20X of single-molecule data outperforms hybrid methods with higher coverage. You can download a 20X subset of (下载测试数据)
or use the following curl command:
curl -L -o yeast.20x.fastq.gz http://gembox.cbcb.umd.edu/mhap/raw/yeast_filtered.20x.fastq.gz
and run the assembler adding sensitive parameters (errorRate=0.035):
canu \ -p asm -d yeast \ genomeSize=12.1m \ errorRate=0.035 \ -pacbio-raw yeast.20x.fastq.gz
After the run completes, we can check the assembly statistics:
tgStoreDump -sizes -s 12100000 -T yeast/unitigging/asm.tigStore 2 -G yeast/unitigging/asm.gkpStore
lenSuggestRepeat sum 160297 (genomeSize 12100000)lenSuggestRepeat num 12lenSuggestRepeat ave 13358lenUnassembled ng10 13491 bp lg10 77 sum 1214310 bplenUnassembled ng20 11230 bp lg20 176 sum 2424556 bplenUnassembled ng30 9960 bp lg30 290 sum 3632411 bplenUnassembled ng40 8986 bp lg40 418 sum 4841978 bplenUnassembled ng50 8018 bp lg50 561 sum 6054460 bplenUnassembled ng60 7040 bp lg60 723 sum 7266816 bplenUnassembled ng70 6169 bp lg70 906 sum 8474192 bplenUnassembled ng80 5479 bp lg80 1114 sum 9684981 bplenUnassembled ng90 4787 bp lg90 1348 sum 10890099 bplenUnassembled ng100 4043 bp lg100 1624 sum 12103239 bplenUnassembled ng110 3323 bp lg110 1952 sum 13310167 bplenUnassembled ng120 2499 bp lg120 2370 sum 14520362 bplenUnassembled ng130 1435 bp lg130 2997 sum 15731198 bplenUnassembled sum 16139888 (genomeSize 12100000)lenUnassembled num 3332lenUnassembled ave 4843lenContig ng10 770772 bp lg10 2 sum 1566457 bplenContig ng20 710140 bp lg20 4 sum 3000257 bplenContig ng30 669248 bp lg30 5 sum 3669505 bplenContig ng40 604859 bp lg40 7 sum 4884914 bplenContig ng50 552911 bp lg50 10 sum 6571204 bplenContig ng60 390415 bp lg60 12 sum 7407061 bplenContig ng70 236725 bp lg70 16 sum 8521520 bplenContig ng80 142854 bp lg80 23 sum 9768299 bplenContig ng90 94308 bp lg90 33 sum 10927790 bplenContig sum 12059140 (genomeSize 12100000)lenContig num 56lenContig ave 215341
Consensus Accuracy
While Canu corrects sequences and has 99% identity or greater with PacBio or Nanopore sequences, for the best accuracy we recommend polishing with a sequence-specific tool. We recommend for PacBio and for Oxford Nanpore data.(专业校正)
If you have Illumina sequences available, can also be used to polish either PacBio or Oxford Nanopore assemblies.
Futher Reading
See the page for commonly-asked questions and the . notes page for information on what’s changed and known issues.